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Abstract—While the size of the reflector in general 

determines the usable area of the quiet zone inside which plane 
wave conditions are found, the edge treatment also plays a 
significant role in terms of overall quality and electromagnetic 

field distribution. Using modern fast simulation technology in 
combination with genetic optimisation, the edge treatment can 
be optimised specifically for a compact antenna test range as 

part of the design process.  This is crucial as it maximises the 
efficiency with which the available space is used and therefore 
minimises the costs of implementation of a new facility.  This is 

particularly important in 5G applications where multiple 
systems are typically required with any economies becoming 
multiplicative.  Several commonly encountered reflector edge 

treatments are examined with the quiet-zone performances 
compared against that of an alternative genetically optimised 
serration design. 

Index Terms—CATR, antenna measurement, serrations, 

genetic optimization, 5G 

I.  INTRODUCTION 

Single offset reflector compact antenna test ranges 

(CATRs) are a well-known solution for taking far-field (FF) 

measurements in limited spaces.  A parabolically shaped 

reflector is used as collimator of the quasi-spherically 

diverging electromagnetic field radiated by an electrically 

small feed antenna and transforms it into a pseudo plane-wave 

within a limited region of space that is situated in front of the 

reflector.  The coupling of this quasi-plane-wave into the 

aperture field of the antenna under test (AUT) produces the 

classical “far-field” measured antenna radiation pattern.  

Clearly then, the accuracy of a pattern measurement taken in 

this type of measurement range is predominantly determined 

by the quality of the pseudo plane-wave.  The amplitude and 

phase uniformity of this pseudo plane-wave is determined 

principally by two factors, the amplitude- and phase-taper 

(which is largely governed by the radiation pattern function of 

the CATR feed antenna and its location with respect to the 

reflecting surface), and high spatial frequency ripple 

determined by the properties of the diffracted field originating 

from the reflector edge treatment [1].  This collimating effect 

is inherently broadband.  However, the upper frequency limit 

depends largely on the reflector surface accuracy, with 

installed systems covering the mm-wave and sub mm-wave 

bands [1].  Conversely, the lower frequency limit is governed 

by the finite size of the reflector, the reflector edge treatment, 

and the wavelength of the illuminating radiation.  Together 

these factors determine the cross-sectional area of the pseudo-

plane-wave with the region of space throughout which the 

collimated field approximates a true TEM plane-wave 

determining the size of the CATR quiet-zone (QZ). 

Since the reflector edge treatment is of such importance to 

the performance of the CATR, several types of termination 

have been proposed, with the most commonly implemented 

being the serrated edge, i.e. castellated, design as proposed by 

E.B. Joy [2], [3] and [4], and the blended rolled edge design 

[5], [6] and [7] which was devised by W.D. Burnside.  The 

serrated edge treatment can be conceived as being a way to 

provide a smooth tapering, i.e. windowing, of the reflected 

field thereby providing a smooth transition from the low 

surface impedance of the reflector body, to the 377 Ω 

impedance of free-space elsewhere.  Previously, the design of 

the serration shape has received some considerable attention 

in the open literature [8], [9] [10], [11] and [12] where 

research has largely concluded that, for many applications, the cos� or an engineering compromise thereof, and circular-

segmented shape provide the best performance. 

In this paper an alternative approach is adopted.  The novel 

approach used herein employs the Superformula [13] to 

specify the shape outline of the individual serrations.  This 

method has the inherent advantage that by varying a relatively 

limited number of input parameters, the edge shape of the 

serrations can be greatly varied, allowing for example, the 

shape to be adjusted from convex to concave form permitting 

a large variety of shapes in between.  The utilisation of the 

Superformula and its use in shaping the CATR serrations will 

be discussed in more detail in Section II below.  The 

optimisation of the edge shape of the serrations is thus found 

by variation of the input parameters to the Superformula using 

a Darwinian evolution principle [14] based genetic evolution 

algorithm [15].  Details of the genetic optimisation (GO) 



algorithm are presented below within Section III.  Section IV 

contains the CATR QZ results with Section V presenting the 

summary and conclusions from this study. 

II. SERRATION SHAPE 

In this section we concentrate on specifying and 

controlling the CATR serration shape, whilst paying particular 

attention to its definition using the Superformula. 

A. Serration Shape Outline 

The shape of the CATR serrations have received attention 

from several workers with several designs being investigated 

with the most widely examined including linear, i.e. 

triangular, and cosine shaped serration being perhaps the 

predominant choice for the shape.  In [8] it was shown that the 

circular shaped serrations can provide a further improvement 

over the linear and cosine shape developed in [2].  Here, 

cosine shaped serrations are described by: 

���� = ±0.5��cos� � �
2�� �� (1) 

where ��, �� are the width and length of the single serration 

respectively, and � is the cosine exponent, with typically � =1.6  however this may be varied to find optimal performance 

for a given range.  Conversely, circular shaped serrations can 

be obtained using: 
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As can be seen from Eqns. (2) and (3), the circular shaped 

outline does not allow for any further optimization in terms of 

the profile of the shape , with only a variation of the width and 

length being permissible.  The resulting serration shapes for 

the cosine and circular functions are shown in Figure 1 below. 

 

Figure 1:Normalized circular and cosine (A=1.6) shaped 

serrations. 

The Superformula [13] is a generalisation of the Lamé 

curve (superellipse) and can be used to described a multitude 

of circular symmetric two-dimensional shapes that are 

commonly found in nature.  The Superformula when 

expressed in polar form can be expressed as: 

��"� = #$1
% cos �&

4 "�$() + $1* cos �&
4 "�$(+,

- .(/ (4) 

where & describes the number of rotational symmetries, %, * are amplitude factors and 0., 0� and 01 determine the 

radial shape.  The resulting shape can then be transformed to 

cartesian coordinates using: 2�3, 4� = ��"� cos " 35 + ��"� sin " 45 (5) 

Thus, depending on the rotational symmetry, monogons 

(& = 1�, diagons (& = 2� and polygons (& > 2� can be 

formed.  Given the shape of the serrations, e.g. a symmetric, 

centred “spike” of certain shape with a broad flat base, 

monogons and diagons are the only forms of interest for this 

research.  Moreover, only the first and fourth quadrant are of 

interest for the shape of the serration.  As a result, in order to 

determine the shape of the serration the parameter variation of 

the Superformula can be limit to & = 2, because the diagon 

is better behaved than the monogon due to its symmetry at the 

y-axis.  To further limit the search space, and making sure the 

final shape is continuous, the following parameter limitations 

are applied: 0� ≤ 0. 
(6) 01 = 0� 

Using these parameter limitations, the serration shape can 

be continuously varied between a convex, linear, cosine and 

circular shape.  In Figure 2, a few possible serration shape 

outlines are illustrated for various values of the input 

parameters 0., 0� and 01. 

 

Figure 2:Normalized Superformula shaped serrations. 

While the optimization, as will be detailed in section 

IV, is currently limited to a single frequency, due to the 

nature of the serrations shapes found with the 

Superformula, it is expected that the results remain as 

broadband as the cosine and circular-segmented shapes. 

B. Serration base widths and relative angle 

With the described formulation in Section A the shape 

outline of each serration is defined.  However, the ripple in 

the QZ can further be reduced by preventing any coherence 

in the scattered wave from the edges of the serrations by 

varying the widths of the serration base and the relative angle 



at which they emanate from the reflector main, i.e. solid, 

body.  Thus, to be able to limit the number of parameters that 

need to be optimised, the inherent symmetry provided by a 

quadratic reflector is used.  This can clearly be easily 

expanded to consider rectangular reflector configurations.  

With the main symmetry axis being a horizontal and vertical 

cut through the centre of the reflector, the serrations can be 

divided into 8 sections.  Each of these sections then uses the 

same variation of width and angle for the individual 

serrations within its section starting from the symmetry line, 

running out to the reflector cross-directed boundary.  To 

further reduce the number of parameters, the widths and 

angles are described using a quadratic function of a single 

variable.  Here, the function is created such that for the widths 

at the lower boundary, all serrations have equal widths.  

Conversely, the upper boundary width of the serrations 

increases quadratically while keeping the inner serrations at 

a practical minimum size. 

Similarly, a corresponding function is devised to 

determine the angle relative to the symmetry axis, with the 

tilt angle ranging from 0° (straight) out, to 45° for the corner 

serration.  In Figure 3 the maximum variation of the widths 

and angles of each serration starting from the symmetry line 

is shown using a cosine outline. 

 

Figure 3:Variation of serration widths and angles by width- 

and angle coefficient. 

III. QUIET ZONE SIMULATION 

A. Simulation using GO algorithm. 

For anything other than the simplest of configurations, it 

is typically very difficult to derive closed form analytical 

solutions for the electromagnetic field at a given point in space 

from electric and/or magnetic fields specified across a known, 

curved, surface.  As such, recourse to typically numerical 

based modelling techniques becomes necessary.  It is possible 

to simulate a CATR using a full-wave three-dimensional 

CEM solver.  And this approach would have the advantage of, 

arguably, introducing the smallest number of assumptions and 

approximations.  However, at the time of writing, although 

many solvers are available, these are largely considered 

inappropriate for simulating problem spaces as electrically 

large as those needed to enclose a complete high frequency 

CATR system when the intent is to place the solver within an 

intensive optimization loop.  Fortunately, we may fall back on 

physical optics (PO) based modelling techniques which can, 

when deployed in an appropriate way, provide the requisite 

accuracy and efficiency.  Thus, in this study, the current 

elements method was harnessed [1].  Here, we replace the 

fields radiated by the feed with an equivalent surface current 

density Js which can subsequently be used as an equivalent 

source to the original fields.  Then, the magnetic and electric 

fields radiated by an electric current element can be obtained 

from the free-space Green’s function and the vector potential 

[1].  Integrating this impressed current across the reflector 

surface thereby allows the computation of the CATR quiet 

zone (QZ). 

The efficiency of the computation can be further 

improved by noting that the illumination of the reflector may 

be evaluated once, prior to entering the optimisation loop, 

with only the field propagation from the reflector surface to 

the CATR QZ requiring evaluation within the optimisation 

loop.  A further powerful feature of this approach is that the 

field propagation itself is embarrassingly parallelable.  

Although in practice there is some overhead associated with 

breaking the problem up and distributing it to an ensemble of 

individual processors with more effort being required to 

aggregate the complete CATR QZ field once computed, for 

the case of modern digital computers comprising typically 8 

to 64 individual CPUs, this makes the field propagation 

calculation complete in much less than a second.  This is true 

for many 5G mm-wave CATRs intended for Massive MIMO 

test applications.  Clearly then, such an approach enables the 

designer to run tests comprising tens of thousands of 

simulations in a matter of only a few hours and it is this huge 

efficiency that underpins the successful use of genetic 

optimisation. 

B. Genetic optimization 

Due to the comparatively wide number of parameters that 

are required to be optimized simultaneously, neither a linear 

parameter sweep, nor a fully random optimization strategy 

were found to be able to converge sufficiently quickly to 

enable the optimum solution to be determined.  Therefore, a 

genetic algorithm was employed that was the analogue of the 

algorithm presented in [15].  The genetic algorithm utilized 

herein can be seen presented in Figure 4 below.  Here, an 

initial population was generated using a randomized set of 

initial parameters so as to produce a wide spread of the design 

parameters.  After simulation, the fitness value of each 

individual was determined.  The population was then pruned, 

and parents of the next generation were selected.  These 

parents were then used to produce new children, i.e. 

individuals, by means of parameter cross-over and mutations 

(which were implemented through random changes of the 

underlying genes). 

 
Begin 

   INITALIZE POPULATION 

   REPEAT UNTIL (TERMINATION CONDITION) DO 

      EVALUATE NEW CANDIDATES 

      PRUNE POPULATION 

      CREATE OFFSPRING 

   END DO 
END 

Figure 4: The genetic algorithm in pseudocode 



The fitness value, i.e. penalty function, used was based on 

an assessment of the ideal QZ field which was assumed to 

comprise a plane-wave which has constant amplitude and 

phase in any direction perpendicular to the wave propagation.  

The fitness value was then computed from the sum of both 

the standard deviation of the amplitude and the standard 

deviation of the phase.  It was found that this “summed” 

fitness value places equal significance on the uniformity of 

the amplitude and phase functions.  Furthermore, the 

variation of the fitness value as a function of generation was 

used to establish a termination condition.  When an optimum 

solution is found in terms of parameter configuration, the 

variation of the fitness value output between iterations will 

remain below a certain predetermined threshold, and thus 

allows the algorithm to terminate 

IV. SIMULATION RESULTS 

To illustrate the applicability of the CATR optimization 

algorithm, an existing CATR designed for 5G applications 

was chosen as a starting point.  The CATR comprised a 

corner offset fed reflector that was conceived to provide a 600 

mm diameter, cylindrically shaped QZ, with its main 

operational frequencies residing in the 5G FR2 mm-wave 

band.  The genetic algorithm as described above was then 

utilized to simultaneously optimize the outline shape of the 

serrations, together with the angle- and widths-functions.  

The optimization was evaluated at a single frequency, which 

in this case was 18 GHz, after which the optimized shaped 

reflector was further simulated at 12.4 and 26.5 GHz to verify 

the resulting design was broadband.  The final results were 

then compared to the cosine shape Eqn. (1), and the circular-

segmented Eqn. (2) where each of these had fixed angles 

from the corner to the symmetry line [30, 0, 0, 0] (deg) and 

widths from the corner to the symmetry line [20 10 10 10] 

(%) which were selected as being representative of values 

that have been used successfully in other applications. 

 

 Cosine1.6 Circular-segmented Genetic Optimized 

f 12.4 18.0 26.5 12.4 18.0 26.5 12.4 18.0 26.5 

Av 0.81 0.93 0.92 1.29 1.05 0.94 0.93 0.66 0.78 

At 0.45 0.91 0.80 0.85 0.83 0.80 0.63 0.62 0.80 

Ar 0.34 0.19 0.23 0.49 0.38 0.28 0.27 0.21 0.17 

Pv 5.93 3.35 3.81 9.82 4.93 3.43 5.38 2.30 2.65 

Cp 28.1 28.4 28.7 28.3 28.7 28.6 28.9 28.5 28.6 

Table 1: Calculated QZ performance for 

each serration design. 

As is almost ubiquitously used in industry and academia, 

for each of the simulated reflector models considered, typical 

QZ performance parameters have been derived which are 

listed in Table 1.  Here, the labels f denotes frequency in GHz, 

Av and Pv are the total amplitude- and phase-variation of the 

co-polar electric field inside the QZ, At is the amplitude taper, 

derived using a second order functional fit to the co-polar 

electrical field inside the QZ, Ar is the remaining variation 

after the amplitude taper has been subtracted from electrical 

field inside the QZ, and Cp is the maximum cross-polar level 

with respect to the normalized copolar level.  A description 

of these parameters can be found in the open literature [1].  

The cross-polar performance is shown largely for indicative 

purposes however it was not part of the optimization goal 

itself as this property is largely governed by the focal length 

of the parabolic reflector and the cross-polar performance of 

the feed, both of which were assumed fixed for the purposes 

of this study. 

Table 1 suggests that the optimized serrations show 

improvements in both the amplitude and phase distributions. 

These improvements are also found in the co-polar plots 

shown in Figure 5 and Figure 6.  Moreover, and upon careful 

examination of the amplitude behavior inside and outside the 

outlined QZ shown in Figure 5, one finds that the amplitude 

crosses the 1 dB level, which is often considered to mark the 

QZ limits, at ± 35 cm for the Genetic-optimized result, which 

is a more than 15% increase over the QZ diameter when 

compared with the cosine shaped serration which exhibited a 

±30 cm limit.  Furthermore, this very worthwhile increase in 

QZ size is gained with an overall reduction in ripple inside 

those limits which is a very desirable feature. 

When, comparing the results at 12.5 GHz in Table 1, one 

might expect to see a better QZ amplitude performance for 

the cuts for the cosine shaped serration, however upon closer 

inspection it can be seen that the performance analysis 

algorithm overvalues the performance of a field distribution 

which shows, upon inspection, an almost flat amplitude taper, 

as is shown in Figure 7 below. 

The current implemented algorithm takes approximately 

0.5 seconds per child, and depending on the input parameter 

ranges an overall optimization takes about 2 hours. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5: Co-polar amplitude cuts through the QZ for (a) 

cosine, (b) circular-segmented and (c) Genetic-optimized, 

at 18 GHz 
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Figure 6: Co-polar phase cuts through the QZ for (a) 

cosine, (b) circular-segmented and (c) Genetic-optimized, 

at 18 GHz 

 

 
(a) 

 
(b) 

Figure 7: Co-polar amplitude cuts through the QZ for (a) 

cosine, (b) Genetic-optimized, at 12.4 GHz 

 

V. SUMMAY, CONCLUSION AND FUTURE WORK 

The outline shape of the reflector serrations has been 

shown to have a significant impact on both the amplitude and 

phase behavior of the pseudo plane wave in the CATR QZ.  

Using the newly developed approach of combining the 

Superformula together with a genetic optimization algorithm, 

the QZ performance has been shown to have been 

significantly improved.  Moreover, using this type of 

approach allows a CATR design to be specifically optimized 

for and adapted to a customer’s specific requirements 

maximizing, amongst other things, the efficiency that 

chamber space is used.  This is important to many customers, 

however it is of particular relevance to 5G FR2 test 

applications, especially those involving production test 

scenarios, where multiple test systems coexist within a single 

host building.  Equally, it is clear that the demonstrated 

improvements allow, for fixed QZ dimensions, an overall 

reduction in facility size with a corresponding decrease in 

total cost of ownership. 

This paper recounts the progress of an ongoing study and 

as such, a number of areas for future investigation are 

envisioned.  One possible limitation of the current approach is 

that it is predicated on the assumption that the serration shape 

provides CATR performance that is inherently broadband in 

nature, with the optimization process being limited to the 

examination of a single chosen frequency.  However, as this 

analysis can be readily expanded to operate across a band of 

frequencies by utilizing the extension a multi-objective 

genetic algorithm [15], this is an area that is intended for 

future investigation.  Furthermore, as the optimized CATR 

performance can be combined with the authors preexisting 5G 

communications systems performance simulation capability, 

this optimization technique can be extended to provide 

facilities that are fully optimized for 5GNR testing. 
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